
NAG C Library Chapter Introduction

x02 – Machine Constants

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

2.1 Floating-point Arithmetic . 2

2.1.1 A model of floating-point arithmetic . 2
2.1.2 Derived arguments of floating-point arithmetic . 3

2.2 Other Aspects of the Computing Environment . 4

3 Recommendations on Choice and Use of Available Functions 4

4 Functions Withdrawn or Scheduled for Withdrawal 4

5 References . 5

x02 – Machine Constants Introduction – x02

[NP3660/8] x02.1

1 Scope of the Chapter

This chapter is concerned with parameters which characterise certain aspects of the computing
environment in which the NAG C Library is implemented. They relate primarily to floating-point
arithmetic, but also to integer arithmetic, the elementary functions and exception handling. The values of
the arguments vary from one implementation of the Library to another, but within the context of a single
implementation they are constants.

The arguments are intended for use primarily by other functions in the Library, but users of the Library
may sometimes need to refer to them directly.

Most of these constants are not functions, but they are defined in the header file <nagx02.h>. Defined
constant names are specified in upper case characters, and functions in lower case. Those machine
constants which are defined as functions have also been given upper case names using #define in
<nagx02.h>.

Each argument-value is returned by a separate C function. Because of the trivial nature of the functions,
individual function documents are not provided; the necessary details are given in Section 3 of this
Introduction.

2 Background to the Problems

2.1 Floating-point Arithmetic

2.1.1 A model of floating-point arithmetic

In order to characterise the important properties of floating-point arithmetic by means of a small number of
arguments, NAG uses a simplified model of floating-point arithmetic. The arguments of the model can be
chosen to provide a sufficiently close description of the behaviour of actual implementations of floating-
point arithmetic, but not, in general, an exact description; actual implementations vary too much in the
details of how numbers are represented or arithmetic operations are performed.

The model is based on that developed by Brown (1981), but differs in some respects. The essential
features are summarized here.

The model is characterised by four integer arguments and one logical argument. The four integer
arguments are:

b: the base

p: the precision (i.e., the number of significant base-b digits)

emin : the minimum exponent

emax : the maximum exponent

These arguments define a set of numerical values of the form:

f � be

where the exponent e must lie in the range [emin ; emax], and the fraction f (also called the mantissa or
significand) lies in the range 1=b; 1½ Þ, and may be written

f ¼ 0:f 1f 2 � � � f p
Thus f is a p-digit fraction to the base b; the f i are the base-b digits of the fraction: they are integers in the
range 0 to b� 1, and the leading digit f 1 must not be zero.

The set of values so defined (together with zero) are called model numbers. For example, if b ¼ 10,

p ¼ 5, emin ¼ �99 and emax ¼ þ99, then a typical model number is 0:12345� 1067.

The model numbers must obey certain rules for the computed results of the following basic arithmetic
operations: addition, subtraction, multiplication, negation, absolute value, and comparisons. The rules
depend on the value of the logical argument ROUNDS.

If ROUNDS is true, then the computed result must be the nearest model number to the exact result
(assuming that overflow or underflow does not occur); if the exact result is midway between two model
numbers, then it may be rounded either way.

Introduction – x02 NAG C Library Manual

x02.2 [NP3660/8]

If ROUNDS is false, then if the exact result is a model number, the computed result must be equal to the
exact result; otherwise, the computed result may be either of the adjacent model numbers on either side of
the exact result.

For division and square root, this latter rule is further relaxed (regardless of the value of ROUNDS): the
computed result may also be one of the next adjacent model numbers on either side of the permitted values
just stated.

On some machines, the full set of representable floating-point numbers conforms to the rules of the model
with appropriate values of b, p, emin , emax and ROUNDS. For example, for DEC VAX machines in single
precision:

b ¼ 2
p ¼ 24
emin ¼ �127
emax ¼ 127 and ROUNDS is NagTrue.

For machines supporting IEEE binary double precision arithmetic:

b ¼ 2
p ¼ 53
emin ¼ �1021
emax ¼ 1024 and ROUNDS is NagTrue.

For other machines, values of the model arguments must be chosen which define a large subset of the
representable numbers; typically it may be necessary to decrease p by 1 (in which case ROUNDS is
always set to false), or to increase emin or decrease emax by a little bit. There are additional rules to ensure
that arithmetic operations on those representable numbers that are not model numbers are consistent with
arithmetic on model numbers.

(Note: the model used here differs from that described in Brown (1981) in the following respects: square-
root is treated, like division, as a weakly supported operator; and the logical argument ROUNDS has been
introduced to take account of machines with good rounding.)

2.1.2 Derived arguments of floating-point arithmetic

Most numerical algorithms require access, not to the basic arguments of the model, but to certain derived
values, of which the most important are:

the machine precision �: ¼ 1
2

� �
� b1�p if ROUNDS is true,

¼ b1�p otherwise (but see Note below).

the smallest positive model number: ¼ bemin�1

the largest positive model number: ¼ 1� b�pð Þ � bemax

Note: the value of � is increased very slightly in some implementations to ensure that the computed result
of 1þ � or 1� � differs from 1. For example in IEEE binary single precision arithmetic the value is set to

2�24 þ 2�47.

Two additional derived values are used in the NAG C Library. Their definitions depend not only on the
properties of the basic arithmetic operations just considered, but also on properties of some of the
elementary functions. We define the safe range argument to be the smallest positive model number z such
that for any x in the range z; 1=z½ � the following can be computed without undue loss of accuracy, overflow,
underflow or other error:

�x

1=x

�1=x

SQRT xð Þ
LOG xð Þ

x02 – Machine Constants Introduction – x02

[NP3660/8] x02.3

EXP LOG xð Þð Þ
y** LOG xð Þ=LOG yð Þð Þ for any y

In a similar fashion we define the safe range argument for complex arithmetic as the smallest positive
model number z such that for any x in the range [z; 1=z] the following can be computed without any undue
loss of accuracy, overflow, underflow or other error:

�w

1=w

�1=w

SQRT wð Þ
LOG wð Þ
EXP LOG wð Þð Þ
y** LOG wð Þ=LOG yð Þð Þ for any y

ABS wð Þ
where w is any of x, ix, xþ ix, 1=x, i=x, 1=xþ i=x, and i is the square root of �1.

This argument was introduced to take account of the quality of complex arithmetic on the machine. On
machines with well implemented complex arithmetic, its value will differ from that of the real safe range
argument by a small multiplying factor less than 10. For poorly implemented complex arithmetic this
factor may be larger by many orders of magnitude.

2.2 Other Aspects of the Computing Environment

No attempt has been made to characterise comprehensively any other aspects of the computing
environment. The other functions in this chapter provide specific information that is occasionally required
by functions in the Library.

3 Recommendations on Choice and Use of Available Functions

Derived parameters of model of floating-point arithmetic:
largest positive model number .. nag_real_largest_number (X02ALC)
machine precision .. nag_machine_precision (X02AJC)
safe range ... nag_real_safe_small_number (X02AMC)
safe range of complex floating point arithmetic nag_complex_safe_small_number (X02ANC)
smallest positive model number ... nag_real_smallest_number (X02AKC)

Largest permissible argument for SIN and COS nag_max_sine_argument (X02AHC)
Largest representable integer ... nag_max_integer (X02BBC)
Maximum number of decimal digits that can be represented nag_decimal_digits (X02BEC)
Parameters of model of floating-point arithmetic:

b ... nag_real_base (X02BHC)
emax ... nag_real_max_exponent (X02BLC)
emin .. nag_real_min_exponent (X02BKC)
p .. nag_real_base_digits (X02BJC)
ROUNDS ... nag_real_arithmetic_rounds (X02DJC)

Switch for taking precautions to avoid underflow nag_underflow_flag (X02DAC)

4 Functions Withdrawn or Scheduled for Withdrawal

Withdrawn
Function

Mark of
Withdrawal

Replacement Function(s)

nag_active_set_size (X02CAC) 2 No replacement document required

Introduction – x02 NAG C Library Manual

x02.4 [NP3660/8]

5 References

Brown W S (1981) A simple but realistic model of floating-point computation ACM Trans. Math. Software
7 445–480

x02 – Machine Constants Introduction – x02

[NP3660/8] x02.5 (last)

	x02 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Floating-int Arithmetic
	2.1.1 A model of floating-int arithmetic
	2.1.2 Derived arguments of floating-int arithmetic

	2.2 Other Aspects of the Computing Environment

	3 Recommendations on Choice and Use of Available Functions
	4 Functions Withdrawn or Scheduled for Withdrawal
	5 References

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

